Designing of Sulfanilamide/Sulfacetamide Derivatives as Human Topoisomerase II Inhibitor: A Docking Approach

نویسنده

  • Sapna Rani
چکیده

Diseases characterized by out-of-control cell growth are known as cancer. One of the most important mechanisms for handling it is the inhibition of the human topoisomerase II receptor. In same context while studying the treatment of cancer we found the significant effects of the derivatives of the sulfonamides, this promotes us to design novel derivatives by the means of in-silico resources with anticancer effects. Molecular docking approaches are routinely used in modern drug design to help understand drug–receptor interaction. This study has been performed with the help of Chemdraw Ultra 7.0, AutoDock Vina (Python Prescription 0.8), and PaDEL software. Results revealed that ligand-protein interaction affinity of all 12 designed molecules ranges from -6.8 Kcal/mol to 8.6 Kcal/mol which is approximately comparable to pre-existing human topoisomerase II inhibitor i.e. etoposide (CID: 36462, ligand-protein interaction affinity is -9.7 Kcal/mol).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Modeling Studies on Liriodenine derivatives as novel topoisomerase II inhibitors

Natural products have been widely used in traditional medicines and are a valuable source for new drug discovery. On the other hand, extensive molecular modeling based on crystallographic data was used to aid the design of synthetic analogues of the natural products. Therefore, in this study, we have proposed the use of molecular modeling and docking techniques to design some potential active a...

متن کامل

Synthesis and Docking Analysis of New Heterocyclic System N1, N4-bis ((2-chloroquinolin-3-yl) methylene) benzene-1, 4-diamine as Potential Human AKT1 Inhibitor

Abstract: Objective(s): In recent years, the chemistry of 2-chloroquinoline-3-carbaldehydes have received considerable attention owing to their synthetic and effective biological importance which exhibits a wide variety of biological activity, N1,N4-bis((2-chloroquinolin-3-yl)methylene)benzene-1,4-diamine derivatives that synthesized from 2-chloroquinoline-3-carbaldehydes may have biological ef...

متن کامل

Synthesis and Docking Analysis of New Heterocyclic System N1, N4-bis ((2-chloroquinolin-3-yl) methylene) benzene-1, 4-diamine as Potential Human AKT1 Inhibitor

Abstract: Objective(s): In recent years, the chemistry of 2-chloroquinoline-3-carbaldehydes have received considerable attention owing to their synthetic and effective biological importance which exhibits a wide variety of biological activity, N1,N4-bis((2-chloroquinolin-3-yl)methylene)benzene-1,4-diamine derivatives that synthesized from 2-chloroquinoline-3-carbaldehydes may have biological ef...

متن کامل

Molecular Dynamics, Docking and QSAR analysis of Napthoquinone derivatives as Topoisomerase I inhibitors

The Topoisomerase I enzyme has become an attractive target for the treatment of cancer. In this paper molecular dynamics, 2D and 3D QSAR and molecular docking studies were performed on 90 naphthoquinone derivatives as Topoisomerase I inhibitors by using the human Topo I-DNA cleavable complex. This model has the drug intercalated with its planar pharmacophore between +1 and -1 bp flanking cleava...

متن کامل

Design, Synthesis and Cytotoxicity Evaluation of New 2-Aryl-5,6-Dihydropyrrolo[2, 1-a]Isoquinoline Derivatives as Topoisomerase Inhibitors

Two set of 2-aryl-5,6-dihydropyrrolo[2,1-a] isoquinolines were designed and synthesized to evaluate their biological activities as topoisomerase inhibitors. Cytotoxic activity of the synthesized compounds 4a-e and 7a-d was assessed against several human cancer cell lines, including MCF-7 (breast cancer cell), HepG2 (liver hepatocellular cells), A549 (adenocarcinomic human alveolar basal epithel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014